Higher integrability for solutions to parabolic problems with irregular obstacles and nonstandard growth

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Integrability for Solutions to Parabolic Problems with Irregular Obstacles and Nonstandard Growth

The aim of this paper is to derive the self-improving property of integrability for the spatial gradient of solutions to degenerate parabolic obstacle problem with irregular obstacles and p(x, t)-nonstandard growth. More precisely, we prove that the spatial gradient of the solution is integrable to a larger power than the natural one determined by the structural assumptions on the involved di e...

متن کامل

Existence of Solutions for Eigenvalue Problems with Nonstandard Growth Conditions

We prove the existence of weak solutions for some eigenvalue problems involving variable exponents. Our main tool is critical point theory.

متن کامل

Higher Integrability for Weak Solutions of Higher Order Degenerate Parabolic Systems

We consider a class of higher order nonlinear degenerate parabolic systems, whose easiest model is the parabolic p-Laplacean system ∫ ΩT ( u · φt − |Dmu|p−2Dmu ·Dmφ ) dz = ∫

متن کامل

Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions

The paper addresses the Dirichlet problem for the doubly nonlinear parabolic equation with nonstandard growth conditions: ut = div (a(x, t, u)|u|�(x, t)|�u|p(x, t)-2 with given variable exponents �(x, t) and p(x, t). We establish conditions on the data which guarantee the comparison principle and uniqueness of bounded weak solutions in suitable function spaces of Orlicz-Sobolev type. DOI: https...

متن کامل

Higher Integrability for Parabolic Systems with Non-standard Growth and Degenerate Diffusions

(1.1) ∂tu− div a(z,Du) = div ( |F |p(z)−2F ) in ΩT . Here, ΩT denotes the space time cylinder Ω × (0, T ) over a bounded domain Ω ⊆ R with dimension n ≥ 2. We write z = (x, t) for points in R, Du for the spatial gradient of u and ∂tu for the derivative with respect to time. The function u : ΩT → R with N ≥ 1 can possibly be vector valued, so that we include in our considerations the case of par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2015.11.028